
Porterville College – New Course Proposal Form
Use this form to initiate a new course proposal for Curriculum Committee review.

Initiator Information​
Author: ________________________________ Department: _________________________________ ​

Date Submitted: _________________________ Proposed Start Term: __________________________

Course Details​
Course Title: ___​

Course Code: ___________________________________ ​

Units: ________ (Lecture Hours: ________ Lab Hours: ________) CID Units (if applicable): _______

Course Description​

__

Rationale for Course​

__

Department or Planning Approval (Select One)​
☐ Included in Program Review (Course was part of the department’s most recent Program Review.)

☐ Department Vote (Date: _____________________)

Yes: __________ No: __________ Abstain: __________ Absent:__________

Signatures
Department Chair/Coordinator: ________Ian Onizuka____________ Date: _____________________

Dean: ______________________________ Date: _____________________

Additional Notes or Attachments (Optional)

__

Attach draft COR, articulation info, CID, outline, or other relevant documents if available.

Updated: 09-09-2025

C-ID Descriptor
Programming Concepts and Methodology II

Descriptor Details

Descriptor Title: Programming Concepts and Methodology II

C-ID Number: 132

Units: 3.0

Date of Last Revision: 10/12/2017 04:44:03 PM PDT

General Description

Application of software engineering techniques to the design and development of
large programs; data abstraction and structures and associated algorithms.

Prerequisites

COMP 122

Corequisites

No information provided

Advisories

No information provided

Content

I. Programming Fundamentals (PF)
PF3. Fundamental data structures
Minimum coverage time: 12 hours

2025-10-03 05:43:58 PM Page 1
Programming Concepts and

Methodology II

Topics
1. Primitive types
2. Arrays
3. Records
4. Strings and string processing
5. Data representation in memory
6. Static, stack, and heap allocation
7. Runtime storage management
8. Pointers and references
9. Linked structures
10. Implementation strategies for stacks, queues, and hash tables
11. Implementation strategies for trees
12. Strategies for choosing the right data structure

Learning Outcomes
1. Discuss the representation and use of primitive data types and built-in data
structures;
2. Describe how the data structures in the topic list are allocated and used in
memory;
3. Describe common applications for each data structure in the topic list;
4. Implement the user-defined data structures in a high-level language;
5. Compare alternative implementations of data structures with respect to
performance;
6. Write programs that use each of the following data structures: arrays, records,
strings, linked lists, stacks, queues, and hash tables;
7. Compare and contrast the costs and benefits of dynamic and static data structure
implementations; and
8. Choose the appropriate data structure for modeling a given problem.

PF4. Recursion
Minimum coverage time: 5 hours

Topics
1. The concept of recursion
2. Recursive mathematical functions
3. Simple recursive procedures
4. Divide-and-conquer strategies
5. Recursive backtracking
6. Implementation of recursion

Learning outcomes
1. Describe the concept of recursion and give examples of its use;
2. Identify the base case and the general case of a recursively defined problem;
3. Compare iterative and recursive solutions for elementary problems such as
factorial;

2025-10-03 05:43:58 PM Page 2
Programming Concepts and

Methodology II

4. Describe the divide-and-conquer approach;
5. Implement, test, and debug simple recursive functions and procedures;
6. Describe how recursion can be implemented using a stack;
7. Discuss problems for which backtracking is an appropriate solution; and
8. Determine when a recursive solution is appropriate for a problem.

II. Programming Languages (PL)
PL4. Declarations and types
Minimum coverage time: 3 hours

Topics
1. The conception of types as a set of values together with a set of operations
2. Declaration models (binding, visibility, scope, and lifetime)
3. Overview of type-checking
4. Garbage collection

Learning outcomes
1. Explain the value of declaration models, especially with respect to programming-in
the-large;
2. Identify and describe the properties of a variable such as its associated address,
value, scope, persistence, and size;
3. Discuss type incompatibility;
4. Demonstrate different forms of binding, visibility, scoping, and lifetime
management;
5. Defend the importance of types and type-checking in providing abstraction
and safety; and
6. Evaluate tradeoffs in lifetime management (reference counting vs. garbage
collection).

PL5. Abstraction Mechanisms
Minimum coverage time: 3 hours

Topics
1. Procedures, functions, and iterators as abstraction mechanisms
2. Parameterization mechanisms (reference vs. value)
3. Activation records and storage management
4. Type parameters and parameterized types - templates or generics
5. Modules in programming languages

Learning outcomes
1. Explain how abstraction mechanisms support the creation of reusable software
components;
2. Demonstrate the difference between call-by-value and call-by-reference parameter
passing;
3. Defend the importance of abstractions, especially with respect to programming-in-

2025-10-03 05:43:58 PM Page 3
Programming Concepts and

Methodology II

the-large; and
4. Describe how the computer system uses activation records to manage program
modules and their data.

PL6. Object-oriented programming
Minimum coverage time: 10 hours

Topics
1. Object-oriented design
2. Encapsulation and information-hiding
3. Separation of behavior and implementation
4. Classes and subclasses
5. Inheritance (overriding, dynamic dispatch)
6. Polymorphism (subtype polymorphism vs. inheritance)
7. Class hierarchies
8. Collection classes and iteration protocols
9. Internal representations of objects and method tables

Learning outcomes
1. Justify the philosophy of object-oriented design and the concepts of encapsulation,
abstraction, inheritance, and polymorphism;
2. Design, implement, test, and debug simple programs in an object-oriented
programming language;
3. Describe how the class mechanism supports encapsulation and information
hiding;
4. Design, implement, and test the implementation of “is-a” relationships
among objects using a class hierarchy and inheritance;
5. Compare and contrast the notions of overloading and overriding methods in an
object-oriented language;
6. Explain the relationship between the static structure of the class and the dynamic
structure of the instances of the class; and
7. Describe how iterators access the elements of a container.

III. Software Engineering (SE)
SE1. Software design
Minimum coverage time: 8 hours

Topics
1. Fundamental design concepts and principles
2. Design strategy

Learning outcomes
1. Discuss the properties of good software design; and
2. Compare and contrast object-oriented analysis and design with structured analysis
and design.

2025-10-03 05:43:58 PM Page 4
Programming Concepts and

Methodology II

Lab Activities

No information provided

Objectives

At the conclusion of this course, the student should be able to:

1. Write programs that use each of the following data structures: arrays, records,
strings, linked lists, stacks, queues, and hash tables

2. Implement, test, and debug simple recursive functions and procedures

3. Evaluate tradeoffs in lifetime management (reference counting vs. garbage
collection)

4. Explain how abstraction mechanisms support the creation of reusable software
components

5. Design, implement, test, and debug simple programs in an object-oriented
programming language

6. Compare and contrast object-oriented analysis and design with structured
analysis and design

Evaluation Methods

Exams
Quizzes
Programming Projects
Discussions
Class Presentations

Textbooks

Data Abstraction and Problem Solving with C++: Walls and Mirrors Latest Edition by
Frank M. Carrano

2025-10-03 05:43:58 PM Page 5
Programming Concepts and

Methodology II

	Author: Paden Burgess
	Department: Mathematics
	Date Submitted:
	Proposed Start Term: Summer 2026
	Course Title: Programming Concepts and Methodology II using C++
	Course Code: CSC P133
	Units: 3
	Lecture Hours: 54
	Lab Hours: 0
	Yes: 5
	No: 0
	Abstain: 0
	Absent: 2
	CID Units: 3
	Course Description: Prerequisite: CSC P122 or equivalent. Total lecture 54 hours. Application of software engineering techniques to the design and development of large programs; data abstraction and structures and associated algorithms. Object-Oriented Programming techniques and design including inheritance, polymorphism, encapsulation. Structures including arrays, records, strings, linked lists, queues, stacks, hash tables, and graphs. Algorithm comparisons of time and space complexity utilizing best, average, and worst case scenarios (Big-O) and growth rates.
	Rationale for course: Students are looking for the same course as ENGR P132 but taught in C++ due to transfer to some institutions.
	Included in Program Review: On
	Department Vote: On
	Additional Notes: C-ID COMP 132
	Department Vote Date: 10/3/2025
	Department/Chair Date: 10/3/2025
	Dean Date: 10-06-25

